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ABSTRACT 

A unified form of Lambert's theorem is presented which is valid for ellip- 
tic, hyperbolic, and parabolic orbits. The key idea involves the selection of an 
independent variable x and a parameter q such that the normalized time of flight 
T is a single-valued function of x for each value of q. The parameter q depends 
only upon known quantities. If T is less than the time of flight for one complete 
revolution, it is a monotonic function of x for each q, making possible the con- 
struction of a simple algorithm for finding x, given T and q. Detailed sketches 
are  given for T(x ,  q) and formulas developed for the velocity vectors at the in- 
itial and final times. Also included is a careful derivation of the classical form 
of Lambert's equations, including the multi-revolution cases. 
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A UNIFIED FORM OF LAMBERT'S THEOREM 

INTRODUCTION 

Lambert's problem, as it arises in most applications, is concerned with the 
determination of an orbit from two position vectors and the time of flight. It has 
important applications in the areas of rendezvous, targeting, guidance, and 
preliminary orbit determination. In this paper a unified form of Lambert's 
theorem will be presented which is valid for elliptic, hyperbolic, and parabolic 
orbits. 

The key idea involves the selection of an independent variable x and a param- 
eter q such that the normalized time of flight is a single valued function of x for 
each value of q. The parameter q depends only upon known quantities. The 
problem then is to find x for given values of q and the time of flight. If the time 
of flight T is less than that for one complete revolution, T is a monotonic func- 
tion of x for each value of q. Thus it is an easy task to design an algorithm for 
finding x. For multirevolution cases T( x )  has a single well-defined minimum 
for each q, 

This idea was presented in a previous paper [ll , where a unified formula was 
given for the computation of T from x and q. Detailed sketches were given for 
T( x ,  q) and a simple formula developed for the time derivative of the magnitude 
of the radius vector at the initial time in terms of x and given quantities. 

The present paper expands upon the previous one by 

1. giving complete derivations which were only sketched before, 

2. giving a careful derivation of the classical form of Lambert's equations, 
including the multirevolution cases, 

3. deriving a number of useful auxiliary formulas, e.g., for the semilatus 
rectum and for the velocity vectors at the initial and final times in terms 
of the two given position vectors. 

THE PROBLEM 

Suppose a particle in a gravitational inverse-square central force field has 
distances r l  and r2 from the center of attraction at times t, and t,. Let c be 
the distance and 6' the central ang1.e between the positions of the particle at the 
two times, where 0 5 0 I2n. 
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Lambert's problem is that of finding the semimajor axis or some related 
quantity for the orbit of the particle, given t , rl ,  t 2, r2, and 0. Having solved 
Lambert's problem, other quantities associated with the orbit are easily found, 
as will be later discussed. Using the law of cosines, we can express c in terms 
of r l ,  r2, and 0: 

We define 

G = universal gravitational constant 

M = mass of attracting body 

,u = GM 

a = semimajor axis of transfer orbit 

e = eccentricity of transfer orbit. 

We will follow the common sign convention for a, Le., a > 0 for elliptic 
orbits and a < 0 for hyperbolic orbits. Definitions of other symbols will be 
given as they are introduced. 

THE CLASSICAL FORM OF LAMBERT'S EQUATIONS 

The path of a particle in an inverse-square central force field is an ellipse, 
parabola, or hyperbola. With origin at the center of attraction, we have, for 
elliptic motion 

= a ( l - e c o ~ @ ~ )  , r 2  

"( t l  - 
- 

tP) - 41 - e sin#1 , 

(3) 

(4) 

n ( t 2 -  t P )  - - 4, - e s i n + 2  
(5) 

2 



where 4, and +2 are the eccentric anomalies at times t , and t 2 ,  tp is the time 
at pericenter, and 

If 2, is a unit vector pointing towards periapsis and 2, is a unit vector in 
the plane of motion 90" ahead of Z l  in the direction of motion, then for the posi- 
tion vectors t, and t, at times t , and t2, 

y2 = a(cosq2  - e);, t a ( 1 -  e2)1/2 (sin+') Z, , 

Substituting these equations in 

where the dot indicates scalar product, we have 

c2 = a2 (cos +2 - cos #1) 2 i- a2 (I - e') ( s i n  +2 - s i n  4,)  2 

Adding (2) and (3), 

Subtracting (4) from (5), 



Equations ( 6 ) ,  (7), and (8) determine the three unknowns a ,  +2 - +,, and 
e cos ( ~ 2 )  (41 ++2) .  Let 

where m is the number of complete circuits made by the particle between times 
t, and t2. 

Equations ( 6 ) ,  (7), and (8) become 

The two inequalities in Equations (9) and (10) are geometrically equivalent 
to the shaded region of Figure 1, from which it is evident that 05 a < 271 and 
- 77 SP <T. We can also obtain 0 5 a < 277 by adding the inequalities in (9) and 
(10); and if we add ,B - a to each part of inequality (9) and divide the result by 2, 
weobtain - ( a - P ) / 2 I p < 7 7 t  ( a - P ) / 2 o r  - ~ T < P < T .  

With appropriate trigonometric identities, Eauations (1 1) and (12) become 

c o s p  - c o s a  f c / a  

4 



Figure 1. 

Solving these two equations, 

- 
 COS^ - 1 - s/a = 1 t 2E , 

where we have defined 

s - - ( r l + r 2 + c ) / 2 ,  

E = - s/2a , 

K = l - c / s .  
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Since cos a = 1 - 2 s i n 2  (a /2) ,  (14) can be changed to 

E = - s i n 2  (a/2) , O L a < % .  

Similarly (15) becomes 

Introducing (1) we have 

= ( r l  r2/s2)  cos2 (8/2) . 

Substituting (16) in (17), 

Note that the sign of q is taken care of by the angle 8: 
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We can introduce E into (13) since 

n ( t 2  - t l )  = (,?Ja3)ll2 (t, - t l )  = T 

where 

T = (8fJs)ll2 ( t , -  tl) /s  . 

This can also be written as 

Substituting (16) into (22), 

Equations (18) and (23) with 0 a < 27r are Lambert's equations for elliptic 
motion. Given T and q, they are to be solved for a and ,B, after which it is a 
simple matter to find all other quantities associated with the orbit. 

It is customary in the literature [e.g., 21 to consider T as a function of E (or 
a) and break the elliptic case of Lambert's theorem into four cases, depending 
upon the sign of q and whether from (16) a/2 is taken in the first o r  second 
quadrant. The choice of E as the independent variable makes T a double valued 
function. This problem can be avoided by choosing a as the independent variable. 
However, an even better choice will be discussed in the next section. 
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By a derivation very similar to that for the elliptic case, one finds for the 
hyperbolic case, 

[Y - 6 - (s inh y - sinh 6)] , (24) T = - ~ - 3 / 2  

sinh (8/2) = q sinh (y/2) (26) 

When m = 0, Equations (22) and (24) break down for E = 0 and suffer from 
a critical loss of significant digits in the neighborhood of E = 0. To remedy 
this (22) is written in the form 

T = G-(-E) - qKc(-KE) (27) 

Replacing arcsin u1l2 and (1  - u ) l l 2  by series [3] 

A similar procedure produces the same series for the hyperbolic case. 
For the parabolic case we have E = 0, in which case the series gives 

T = (4/3) ( l - q 3 )  . 

Thus with m = 0 we have a series which is valid for elliptic, hyperbolic, and 
parabolic transfer provided 0 < x < 2l/ 2. 
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A UNIFIED FORM OF LAMBERT’S EQUATIONS 

As mentioned in the previous section, T is a single-valued function of a.  
However, a better behaved function is obtained if we choose as the independent 
variable 

x = cos (a /2 )  , - 1 ’ x < l ,  

= cosh ( y /2 )  , x > l .  

We then have, for both elliptic and hyperbolic transfer, 

For parabolic transfer, it is obvious that we should let x = 1. 

F o r  the elliptic case let 

y = s in(a /2)  = 

- g - cOs(;)(a-p) = xz - qE 

= a rc t an ( f /g )  , O L h l T .  
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It then follows from (21) for the elliptic case that 

T = 2(m7rtX-h) y3  . / 
For the hyperbolic case let 

f = s i n h ( i ) ( y -  6) = y ( z - q x )  

g = cosh ($ ) (y -S)  = xz - qE . 

Note that O L y -  6 since O I f  <a. Let 

h = ( $ ) ( s i n h y - s i n h z )  = y ( x - q z )  . 

It follows that 

(i) (y - 6) = arctanh ( f /g )  
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Thus for the hyperbolic case 

T 2[h-ln(f t g ) ]  y3 . / 
It is now apparent that, given q and x, the following steps produce T for all 

cases: 

1. K = q2 

2 . E  = x 2 - 1  

4. If p is near 0, compute T from (27) 

6 .  z = (1+KE) ' l2  

7. f = y(z-qx)  

8. g = xz - qE 

9. I f E < O , X  = arctan(f/g),  d = m v  + A ,  O L A L v  
I f E > O , d  = l n ( f + g )  

10. T = 2(x-qz-d/y)/E. 

The following formula for the derivative holds for all cases except for 
x = 0 withK = 1 and for x = 1. 

dT/dx = (4  - 4qKx/z - 3xT)/E . 

If x i s  near 1, differentiate (27) to obtain 

dT/dx = 2,x[qK2 5' (-KE) - 5 '  (-E)] , 
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The derivative in the case of x = 0 with k = 1 will be discussed in the next 
section. 

AUXILIARY FORMULAS 

In this section we will show how to obtain a number of useful quantities 
associated with the two-body orbit, assuming Lambert’s problem has been 
solved for x. 

In the derivation of Lambert’s equation for the elliptic case, a and P are 
defined in such a way that 

a - ,8 f 2m77 2(h+m77) . - 
42 - 4l - 

Using (22) the eccentric anomaly difference can also be written in the form 

g52 - q51 = ( -E)3’2T t s i n a  - s i n p  

= y3  T f 2 y ( x -  qz)  . 

From (28) we have 
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We now obtain a formula for the time derivative i- at time t 1. Kepler's 
equation in the elliptic case can be written in the form [41 

Substituting l/a = 2y2/s, t 2  - t l  = s 3 l 2  T / ( ~ , L L ) ' / ~ ,  and making use of (29) 
and (30) gives 

Multiplying through by z + qx, we have, since ( z - qx)  ( z  + qx) 1 - K = c / s  
and ( Z  + q x )  ( X Z -  qE) = x f  q z ,  

= 2 q z ( s - r l )  + 2 x ( K s - r l )  

- - K s  - r l  = ( 1 - 4 ~ ) ~  - r l  - s - c - r l  - r 2 - s  . 

Thus we have finally that 

At time t we find 
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By a similar procedure we can show that (31) and (32) hold also for the 
hyperbolic and parabolic cases. 

Having x we can find the semimajor axis a or  its reciprocal 

We know that 

e c o s 4  = 1 - r/a , 

e s i n 4  = rE/(pa)1'2 , 

where r is the magnitude of the position vector at time t . 
Thus for the eccentricity we have 

For the semilatus rectump we have 

- a ( 1 - e ' )  = 2r - r2/a - <r i>2 /p  P -  

and for the value of r at the point of closest approach to the center of attraction 
we have 

P - -  
~ + e '  r -  

P 

For the speed we have 
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For the component of velocity perpendicular to a radius vector, 

The above formulas hold for any type of two-body motion. Either of the 
subscripts 1 or  2 can be plac'ed on r, i, and v. 

- If i 1  < 0 and;, > 0 o r  if i l  and;, have the same sign with B > n ,  periapsis 
passage will  occur between times t and t 2, in which case it may be of interest 
to compute rp. 

If the plane of motion is known, the velocity ;; at either time t or time t 
can be written in any convenient coordinate system, since the components 
ve a re  known. The plane of motion can be found from the position vectors T1 
and t2 at times t and t 2, provided they are not parallel. Since this is a com- 
mon case, we will express 3, and 3, (the velocities at t and t2) in terms of 
r and?,. 

and 

-+ 

For the velocity 3, we have 

where 'r is along ? and Ge is in the plane of motion perpendicular to tl and" 
in the direction of motion, Le., in the direction of increasing true anomaly. We 
have 

where c 1  and c 2  are to be determined. 

-+ -.+ -+ --I - 
- o = c1 r: t c2  r l  * r, r l  

2 4 -+ -+ -+ - 
- r 2 v e 1  s ine  = c1 r l  - r 2  t c 2  r 2  . r 2  * V e l  
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Since y1 * y2 = r l  r 2  cos 6 we have 

r l c l  t ( r 2 c o s 8 ) c 2  = o 

- (rl C O S @ )  c1 + r 2 c 2  - vg s ine . 

Solving for c1 and c2  we have 

In a similar way we find 

cot B )  ( Y 2 / r 2 ) .  - + -  v 2  - - ( v g 2 c s c ~ ) ( t 1 / r 1 )  t ( i2  t v e 2  

Figure 2 shows T as a function of x. Note the discontinuity in the slope for 
x = 0 with K = 1. For K = 1, z = I XI. Thus we are led to consider four cases: 
q = &l with x10 ,  q = %1 with xL 0. Examination of the formulas for dT/dx 
in these cases reveals that if q = 1 we have a left-hand derivative of -8 and a 
right-hand derivative of 0 at x = 0. If q = 1 we have a left-hand derivative of 
0 and a right-hand derivative of -8 at x = 0. 

With further analysis we find that the cases (q = 1, x '< 0) and (q = -1, x10) 
represent rectilinear orbits. 

For m = 0, T is a monotone function of x, making possible a simple numeri- 
cal procedure for solving Lambert's problem. Figure 2 is for the elliptic case, 
Figure 3 for the hyperbolic case, the parabolic case occurring at x = 1 in both 
figures. Figure 4 shows a small region of Figure 3 where d2 T/dx2 is negative. 
If the Newton-Raphson method is being used to find x, a switch should be made 
in this region to the secant (regula falsi) method. 

No solutions of Lambert's problem exist in the shaded regions of Figures 2 
and 3 .  x = 1 ( m > 0 )  and x = -1 are vertical asymptotes. T-0 as x + m .  
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